
Lecture 6: Convergence and related concepts

1. Borel-Cantelli Lemmas

Let E1, E2, E3, . . . be a sequence of events on some probability space (Ω,F , P ). In
many situations, an important question is whether infinitely many or only finitely many of
these events occur. The Borel-Cantelli lemmas provide the answer to this question, but first
we need some preliminary definitions and notations.

Define

lim sup
n→∞

En =

∞
⋂

m=1

∞
⋃

n=m

En = {En infinitely often}

lim inf
n→∞

En =
∞
⋃

m=1

∞
⋂

n=m

En = {En eventually}.

One advantage of the above formal notation is that it makes clear that {En infinitely often}
and {En eventually} are themselves events (since σ-algebras are closed under countable
unions and intersections). In addition, note that

{En eventually}c = {Ec
n infinitely often}

{En infinitely often}c = {Ec
n eventually}

Ilim sup En
= lim sup IEn

Ilim inf En
= lim inf IEn

.

Applying Fatou’s Lemma to the random variables IEn
, we immediately obtain

P (lim inf En) ≤ lim inf P (En) (1.1)

and applying Fatou to 1 − IEn
, we also obtain the reverse Fatou Lemma

P (lim sup En) ≥ lim sup P (En). (1.2)

Lemma 1.1. (First Borel-Cantelli Lemma) Let E1, E2, E3, . . . be a sequence of events such
that

∑∞

n=1 P (En) < ∞. Then P (lim sup En) = P (En, i.o.) = 0.

Proof. Let Fm =
⋃∞

n=m En and F = lim sup En. Then since for each m, F ⊂ Fm we have

P (F ) ≤ P (Fm) ≤

∞
∑

n=m

P (En).

The result follows by letting m → ∞.

Lemma 1.2. (Second Borel-Cantelli Lemma) Let E1, E2, E3, . . . be a sequence of indepen-
dent events such that

∑∞

n=1 P (En) = ∞. Then P (lim sup En) = P (En, i.o.) = 1.

Proof. We show that P ((lim sup En)c) = 0. Recall that

(lim sup En)c = lim inf Ec
n =

∞
⋃

m=1

∞
⋂

n=m

Ec
n.
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Let pn = P (En). Then by independence, we have

P (

∞
⋂

n=m

Ec
n) =

∞
∏

n=m

(1 − pn).

Next, note that for x ≥ 0, 1 − x ≤ e−x, so since
∑

pn = ∞, we have

∞
∏

n=m

(1 − pn) ≤ exp

{

−
∑

n≥m

pn

}

= 0.

Finally, since the countable union of events of probability 0 has probability 0, we have
P ((lim sup En)c) = 0.

The subsequent sections contain many applications of these 2 results.

2. Modes of convergence

Fix a probability space (Ω,F , P ). In what follows, all random variables and events live
on this same probability space, unless otherwise stated. For p ≥ 1, let Lp = Lp(Ω,F , P ) =
{X : E(|X|p) < ∞} and L∞ = {X : |X| ≤ K a.s. for some K}. Recall that L∞ ⊂ Lp ⊂
Lq ⊂ L1 for all p ≥ q. Some definitions:

Convergence in probability A sequence of random variables (Xn : n = 1, 2, 3, . . .) is said to
converge to random variable X in probability (as n → ∞) if for every ε > 0, P (|Xn − X| >
ε) → 0 as n → ∞.

Convergence in Lp A sequence of random variables (Xn : n = 1, 2, 3, . . .) is said to converge
to random variable X in Lp (1 ≤ p < ∞) if E(|Xn − X|p) → 0 as n → ∞.

Note: Since for p ≥ q Lp ⊂ Lq, it is clear that Xn → X in Lq implies Xn → X in Lp.

Convergence almost surely A sequence of random variables (Xn : n = 1, 2, 3, . . .) is said to
converge to random variable X almost surely if P (Xn → X) = 1.

The definition of almost sure convergence raises an important technical question: im-
plicit in the statement that P (Xn → X) = 1 is that {Xn → X} is an event, but this is not
obvious at first sight!

For a sequence of random variables (Xn : n = 1, 2, 3, . . .), let Tn = σ(Xn+1, Xn+2, . . .)
and T =

⋂

n Tn. The σ-algebra T is called the tail σ-algebra for the sequence (Xn : n =
1, 2, 3, . . .). Clearly, T ⊂ F . The tail σ-algebra contains many important events related to
convergence, for example, the sets {lim Xn exists}, {

∑

n Xn < ∞} and {lim X1+···+Xn

n
exists}

all belong to T and hence are events. We will discuss the tail σ-algebra in greater detail
later (Kolomogorov 0-1 law, strong law of large numbers etc.)

Of the 3 different modes of convergence introduced above, convergence in probability
is the weakest, as the next two results demonstrate.

Proposition 2.1. Xn → X a.s. implies Xn → X in probability.

Proof. By definition, if Xn → X a.s. then for every ε > 0, the set

{ω : ∃N(ω, ε) s.t. |Xn(ω) − X(ω)| < ε ∀n ≥ N}
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has probability 1, or in other words, P (|Xn − X| > ε i.o) = 0. By the reverse Fatou lemma
(1.2),

0 = P (lim sup{|Xnk
− X| > ε}) ≥ lim sup P (|Xnk

− X| > ε).

Since probabilities are non-negative, this shows that lim P (|Xnk
− X| > ε) = 0.

Proposition 2.2. For any p ≥ 1, Xn → X in Lp implies Xn → X in probability.

Proof. Suppose that P (|Xn−X| > ε) 6→ 0, then for some δ > 0, there is an infinite sequence
(nk) such that P (|Xnk

− X| > ε) > δ for all k. Then

E(|Xnk
− X|p) ≥ E(|Xnk

− X|p; |Xnk
− X| > ε) > εpP (|Xnk

− X| > ε) > εpδ

for all k, so that E(|Xnk
− X|p) 6→ 0.

It is not hard to construct examples to show that the converses to the above 2 results
are false.

Example 2.1. Let E1, E2, . . . be a sequence of independent events with P (En) = 1/n and
let Xn = nIEn

. Then since for any 0 < ε < 1, P (|Xn| > ε) = P (En) = 1/n → 0, Xn → 0
in probability. But

∑

P (|Xn| > ε) =
∑

1/n = ∞ so by Borel-Cantelli II, almost surely,
|Xn| > ε for infinitely many n so Xn 6→ 0. Also E(|Xn|

p) = npP (En) = np−1, so Xn 6→ 0 in
Lp for p ≥ 1.

Convergence in distribution (weak convergence)

This idea of convergence differs in nature from the others above, in that the modes
of convergence above are all in one way or another to do with sample path behaviour, in
particular related to sets of the form {|Xn −X| > ε}, whereas convergence in distribution is
purely a property of the distributions of the random variables concerned.

Theorem 2.3. Let (Fn, n ≥ 0) be a sequence of distribution functions and let F be a
distribution function. Let φn and φ denote the associated characteristic functions:

φn(θ) =

∫

R

eiθx dFn(x), φ(θ) =

∫

R

eiθx dF (x).

Then the following statements are equivalent:

1. Fn(x) → F (x) for every x where F is continuous;

2. for every continuous and bounded function h,

∫

R

h(x) dFn(x) →

∫

R

h(x) dF (x);

3. φn(θ) → φ(θ) for all θ.

The proof of this theorem is beyond the scope of these lectures; we will simply treat the
above equivalent statements as the definition of convergence in distribution. As can be seen
from the statement of Theorem 2.3, there is no need for any mention of random variables
at all although it is often helpful to think in terms of random variables. Thus, if Xn is
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a random variable whose distribution function is Fn (or equivalently whose characteristic
function is φn) and X is a random variable whose distribution function is F , then we say
that Xn → X in distribution if any of the statements in Theorem 2.3 holds; in particular,
note that Theorem 2.3(2) says E(h(Xn)) → E(h(X)).

The continuity requirements in Theorem 2.3 are crucial, as the following examples
show.

Example 2.2. Let Xn have N(0, σ2
n) distribution where σ2

n → 0. Then Xn → 0 in dis-
tribution, but the limiting distribution function (of the deterministic random variable 0)
is

F (x) =

{

1 if x ≥ 0

0 if x < 0.

Thus Fn(0) = 1/2 6→ F (0) = 1.

Example 2.3. Let Xn = 1/n be a deterministic random variable. Then Xn → 0 in distri-
bution but unless h is continuous, we cannot conclude that h(1/n) → h(0).

As pointed out earlier, convergence in distribution is purely a property of the distri-
butions of the respective random variables – it makes sense to say that Xn → X even if the
random variables are defined on different probability spaces. However, if Xn and X all live
on the same probability space (Ω,F , P ), then we have the following result:

Proposition 2.4. Xn → X in probability implies Xn → X in distribution.

Proof. Suppose P (|Xn − X| > ε) → 0 for all ε > 0. Let h be bounded and continuous
and let M = maxy |h(y)|. Fix an arbitrary δ > 0. Since h is continuous, we can choose
ε so that |h(x) − h(y)| < δ whenever |x − y| ≤ ε. Next, we can choose n so large that
P (|Xn − X| > ε) < δ. Then

|E(h(Xn) − h(X))| ≤ E(|h(Xn) − h(X)|)

= E(|h(Xn) − h(X)|; |Xn − X| ≤ ε)

+ E(|h(Xn) − h(X)|; |Xn − X| > ε)

< δ + Mδ.

Since δ is arbitrary, this shows that |E(h(Xn) − h(X))| → 0.

The following corollary immediately follows from Proposition 2.1:

Corollary. Xn → X a.s. implies Xn → X in distribution.

3. Uniform integrability

Definition 3.1. Let R be a family of random variables. Then R is said to be a uniformly
integrable family if for any given ε > 0, there exists K such that

E(|X|; |X| > K) < ε ∀X ∈ R.
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Example 3.1. An important example of a uniformly integrable family: Let X ∈ L1. Then
the family of conditional expectations {E(X|G) : G ⊂ F} is uniformly integrable. Fix
an arbitrary ε and choose δ so small that for any event E ∈ F , P (E) < δ implies that
E(|X|; E) < ε. Next choose K so large that E(|X|)/K < δ. For any σ-algebra G ⊂ F , let
Y = E(X|G). By Jensen’s inequality

|Y | ≤ E(|X|
∣

∣G). (3.1)

Taking expectations above shows that E(|Y |) ≤ E(|X|). Moreover,

E(|Y |) ≥ E(|Y |; |Y | > K) ≥ KP (|Y | > K)

so we have KP (|Y | > K) ≤ E(|Y |) ≤ E(|X|) and thus P (|Y | > K) ≤ E(|X|)/K < δ which
implies E(|X|; |Y | > K) < ε. But since {|Y | > K} ∈ G, by (3.1) and the definition of
conditional expectation

E(|Y |; |Y | > K) ≤ E(E(|X|
∣

∣G); |Y | > K) = E(|X|; |Y | > K) < ε.

Example 3.2. An example of a family which is not uniformly integrable: Let Xn take values
0 of n such that P (Xn = n) = 1/n and P (Xn = 0) = 1− 1/n. But for any K > 0, if n > K
we have

E(|Xn|; |Xn| > K) = nP (Xn = n) = 1,

so the family (Xn : n ≥ 0) is not uniformly integrable.

Below are two sufficient conditions for uniform integrability which are applicable in a
wide variety of situations.

Proposition 3.1.

1. If there exists a random variable 0 ≤ Y ∈ L1 such that |X| ≤ Y (a.s.) for all X ∈ R,
then R is uniformly integrable;

2. If R is bounded in Lp for some p > 1, i.e. there is some A such that E(|X|p) ≤ A for
all X ∈ R, then R is uniformly integrable.

Proof.

Proof of (1): Since E(Y ) < ∞, for any ε, we can choose K so large that E(Y ; Y > K) < ε.
But for all X ∈ R,

E(|X|; |X| > K) ≤ E(Y ; Y > K) < ε.

Proof of (2): Recall that p > 1 so 1 − p < 0.

E(|X|; |X| > K) = E(|X|p|X|1−p; |X| > K) ≤ K1−pE(|X|p; |X| > K) ≤ K1−pA.

To finish the proof, note that for given ε, we can choose K so large that K1−p < ε/A.

Note that in Proposition 3.1(2), it is crucial that p > 1; as Example 3.2 shows, L1-
boundedness is not sufficient for uniform integrability.

Finally, note that the condition in Proposition 3.1(1) is identical to that in the domi-
nated convergence theorem and in fact uniform integrability gives an improvement on dom-
inated convergence. The proof of the following can be found in Williams 1991:
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Theorem 3.2. Let Xn and X be random variables in L1. Then E(|Xn − X|) → 0 if and
only the following 2 conditions are satisfied;

(i) Xn → X in probability and

(ii) (Xn) is a uniformly inregrable family.

In particular, since |E(Xn) − E(X)| ≤ E(|Xn − X|), if conditions (i) and (ii) hold,
then E(Xn) → E(X).
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